Source code for wrappers.tensorflow_wrapper

import pandas
import tensorflow
import tensorflow_hub


[docs]class TensorFlowWrapper: """ Wrapper object for TensorFlow graph and helps use it. """ def __init__(self, embedding_layer_hub_name: str) -> None: g = tensorflow.Graph() with g.as_default(): # Import the Universal Sentence Encoder's TF Hub module embedding_layer = tensorflow_hub.Module(embedding_layer_hub_name) self._sts_input1 = tensorflow.placeholder(tensorflow.string, shape=None) self._sts_input2 = tensorflow.placeholder(tensorflow.string, shape=None) # For evaluation we use exactly normalized rather than approximately normalized. sts_encode1 = tensorflow.nn.l2_normalize(embedding_layer(self._sts_input1), axis=1) sts_encode2 = tensorflow.nn.l2_normalize(embedding_layer(self._sts_input2), axis=1) cosine_similarities = tensorflow.reduce_sum(tensorflow.multiply(sts_encode1, sts_encode2), axis=1) clip_cosine_similarities = tensorflow.clip_by_value(cosine_similarities, -1.0, 1.0) self._sim_scores = 1.0 - tensorflow.acos(clip_cosine_similarities) init_op = tensorflow.group([tensorflow.global_variables_initializer(), tensorflow.tables_initializer()]) g.finalize() self._session = tensorflow.Session(graph=g) self._session.run(init_op)
[docs] def append_scores(self, sentence_pairs: pandas.DataFrame) -> None: """ Appending scoring of cosine similarity based on the given embedding layer. :param sentence_pairs: DataFrame matrix of paired sentences with the columns ["sent_1", "sent_2"] where each row is a paired sentences. :return: None; it append to given DataFrame new column "score" with the cosine similarity score for each pair in each row. """ text_a = sentence_pairs["sent_1"].fillna("").tolist() text_b = sentence_pairs["sent_2"].fillna("").tolist() scores = self._session.run(self._sim_scores, feed_dict={self._sts_input1: text_a, self._sts_input2: text_b}) sentence_pairs["score"] = scores
[docs] def close(self): """ closes the TensorFlow session. """ self._session.close()